Einstein’s theory of relativity passes its toughest test yet  

“Yet more evidence that the great physicist got gravity right.”

From NBC News:

Einstein’s theory of general relativity has passed its toughest test with flying colors, a new study reports.

General relativity, which Einstein proposed in 1916, holds that gravity is a consequence of space-time’s inherent flexibility: Massive objects distort the cosmic fabric, creating a sort of well around which other bodies orbit.

Like all scientific theories, general relativity makes testable predictions. One of the most important is the “equivalence principle” — the notion that all objects fall in the same way, no matter how big they are or what they’re made of. [Einstein’s Theory of Relativity Explained (Infographic)]

Researchers have confirmed the equivalence principle many times on Earth — and, famously, on the moon. In 1971, Apollo 15 astronaut David Scott dropped a feather and a hammer simultaneously; the two hit the gray lunar dirt at the same time. (On Earth, of course, the feather would flutter to the ground much later than the hammer, having been held up by our atmosphere.)

But it’s tough to know if the equivalence principle applies in all situations — when the objects involved are incredibly dense or massive, for example. This wiggle room has given hope to adherents of alternative gravity theories, though such folks remain in the minority.

The new study could take some of the air out of their optimism. An international team of astronomers tested the equivalence principle under extreme conditions: a system composed of two superdense stellar corpses known as white dwarfs and an even denser neutron star.

Read the whole thing …

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s